. MÉCANIQUE DES FLUIDES.

Après une étude cinématique très succincte relative à deux écoulements particuliers et qui n'est qu'un outil pour la suite, cette partie propose une modélisation de l'écoulement de l'air autour d'une aile afin d'en tirer quelques conséquences sur les actions qu'elle subit.

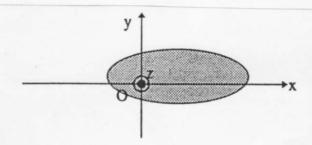
Dans tout le problème, l'air sera considéré comme un fluide incompressible de masse volumique p en écoulement stationnaire sur lequel la pesanteur aura une influence négligeable. Sauf indication contraire, ce fluide sera supposé parfait.

Les obstacles solides introduits dans cet écoulement seront à géométrie cylindrique (de base a priori quelconque), avec des génératrices parallèles à l'axe Oz perpendiculaire au plan de figure Oxy. On se limitera à une étude bidimensionnelle dans ce plan, les phénomènes étant supposés invariants par translation selon Oz.

 \vec{e}_x , \vec{e}_y , \vec{e}_z désignera la base orthonormée directe associée au repère Oxyz.

Les coordonnées cylindriques d'axe polaire Oz seront notées r , θ et z avec Ox pour origine des angles.

L'écoulement du fluide en un point M sera décrit par sa vitesse eulérienne $\vec{v}(M)$.



0. Etude cinématique de deux écoulements particuliers.

0.1. Ecoulement tourbillonnaire.

On considère un écoulement orthoradial d'axe polaire Oz appelé tourbillon tel que :

pour
$$r < a$$
, $Rot[\vec{v}(M)] = \gamma \cdot \vec{e}_z$ où γ est une constante algébrique.
pour $r > a$ $Rot[\vec{v}(M)] = \vec{0}$.

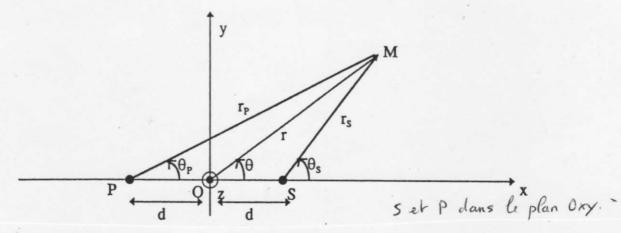
Ce tourbillon est dit ponctuel dans le plan Oxy si l'on considère que si a $\to 0$ et $\gamma \to \infty$, le produit $\pi a^2 \gamma$ demeure égal à la valeur finie Γ que l'on nomme intensité du tourbillon.

Etablir l'expression de $\vec{v}(M)$ en coordonnées polaires (r>a) avec Γ comme paramètre.

A quelle distribution électromagnétique peut-on éventuellement comparer cet écoulement? Rappel du théorème de stokes : 6 v. de = stokes : 6 v. de

0.2. Ecoulement d'un doublet

On considère un écoulement engendré par un doublet résultant de l'association d'une source et d'un puits.



a. La source se situe le long de l'axe Sz, parallèle à Oz. 05 = d>0 L'écoulement s'effectue radialement en symétrie cylindrique. En introduisant le débit volumique D correspondant à une longueur Dz de la source, ainsi que le vecteur $\vec{v} = \frac{5\vec{n}}{5\vec{n}}$

Etablir l'expression de la vitesse $\vec{v}_S(M)$ du fluide en coordonnees cylindriques (r_s, θ_s, z) d'axe polaire Sz ainsi que le potentiel $\phi_S(M)$ associé défini par $\vec{v}_S(M) = \overline{\text{grad}}[\phi_S(M)]$ en fonction de D r_S \vec{u}_s \vec{v}_s et d'une constante qu'on ne déterminera pas

b. Le puits se situe le long de l'axe Pz, parallèle à Oz tel que le point P situé dans le plan Oxy ait pour coordonnées (-d, 0). Dans ce puits, le fluide arrive avec une répartition radiale uniforme avec le même débit volumique D (mais en sens inverse) pour une longueur Az de la source

Donner sans démonstration l'expression de la vitesse $\vec{v}_P(M)$ du fluide en coordonnées cylindriques (r_P, θ_P, z) d'axe polaire Pz ainsi que le potentiel $\phi_P(M)$ associé.

c. Soit $\varphi(M)$ le potentiel des vitesses dans le cas où l'on associe la source et le puits pour former un doublet pour lequel $d \to 0$ et $D \to \infty$ de sorte que le produit $2Dd/\Delta z$ est égal à une valeur finie H que l'on nommera intensité du doublet. On prendra le potentiel nul en 0

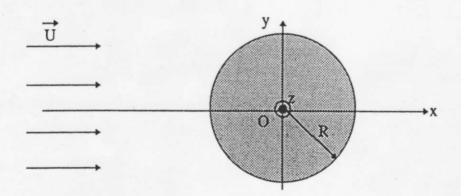
En coordonnées cylindriques (r, θ) d'axe polaire Oz, montrer que $\phi(M) = -\frac{H}{2\pi} \frac{\cos \theta}{r}$. En déduire l'expression en coordonnées cylindriques de la vitesse $\vec{v}(M)$ créée par ce doublet avec H comme paramètre.

d. A quelle distribution électromagnétique peut-on éventuellement comparer cet écoulement ?

Dans la suite le paramètre H sera considéré comme une grandeur algébrique, c'est à dire que les positions du puits et de la source pourront être inversées.

1. Ecoulement autour d'un cylindre en rotation.

Un cylindre à base circulaire de rayon R et en rotation uniforme à la vitesse angulaire ω autour de son axe Oz est placé dans l'air dont l'écoulement loin de cet obstacle se fait à la vitesse uniforme $\vec{U} = U.\vec{e}_x$ et à la pression P_o .



Pour étudier l'effet du cylindre sur le fluide nous utiliserons une méthode de superposition qui consiste à introduire à l'intérieur de l'obstacle des singularités telles que son contour soit une ligne de courant de l'écoulement. Ces singularités sont les suivantes :

Un doublet d'axe Oz et d'intensité H qui engendre un champ de vitesse $\vec{v}_D(M)$.

Un tourbillon également d'axe Oz et d'intensité Γ qui engendre un champ de vitesse $\vec{v}_T(M)$.

On pose alors $\vec{v}(M) = \vec{v}_T(M) + \vec{v}_D(M) + \vec{U}$ en tout point M de l'écoulement.

1.1. Etude cinématique.

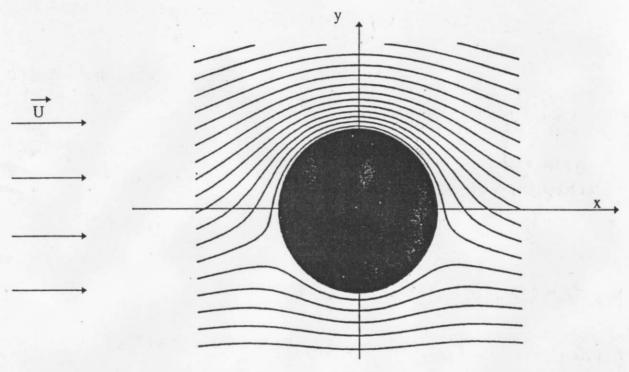
Les coordonnées polaires de la vitesse \vec{v} de cet écoulement ont pour expression :

$$v_r = U \left(1 - \frac{R^2}{r^2}\right) \cos\theta$$
 $v_\theta = -U \left(1 + \frac{R^2}{r^2}\right) \sin\theta + \frac{\Gamma}{2\pi r}$

En s'appuyant sur des résultats établis précédemment, justifier ces expressions en explicitant le paramètre H en fonction de R et de U.

1.2. Etude dynamique.

On donne ci-dessous le tracé des lignes de courant pour des valeurs particulières de U, R et \(\Gamma \).



- a. Comparer qualitativement le module v de la vitesse \vec{v} du fluide pour les points situés sur l'axe Oy selon que y > R ou y < -R.
- b. Indiquer le signe de Γ et préciser si le sens de rotation du cylindre est horaire ou antihoraire .
- c. En exploitant le tracé ci-dessus, justifier l'existence de points d'arrêt du fluide à la surface du cylindre. Donner $|\Gamma|$ en fonction des paramètres U, R et du sinus d'un angle géométrique θ_n dont on précisera dans ce cas la valeur numérique approchée en degrés .
- d. Exprimer la pression $P(\theta)$ à la surface du cylindre avec U, ρ , R, Γ et P, comme paramètres.
 - a. Soit F la résultante de pression de l'air sur le cylindre.

Donner, sans calcul mais en les justifiant, la valeur de la composante F_x et celle du moment par rapport à l'axe Oz de cette action. (On naisonnera per symétrie)

f. Le cylindre ayant une hauteur h, établir l'expression de la composante F_y de \vec{F} en fonction de ρ , U, Γ et h puis de ρ , U, R, $\sin\theta_{\rho}$ et h. Commenter en précisant les applications envisageables dans certains sports.

Donner une valeur approchée de F_y pour les valeurs numériques suivantes : $U = 15 \text{ m.s}^{-1}$, R = 1 m, h = 3 m et $\rho = 1,3 \text{ kg.m}^{-3}$.

CCP PC 99 0.1) The Stokes & v. dl = Mrotv.ds où l'est un contour fermé s'est une surface s'appregant sur l' I est jos hyp. orthoradiale; sugosans I(x) alors v(n) ettr = 8 ITa pour r>a = 8 ita zr Posons 1 = Max : V = Tu o n>a Cela fait penser à B du à un fil a cylindrique percouru par i tel que l'= poi B(1>a)= 10 il plos 2717 0 0/2)a) D= v5 = v2111, DZ Exament radial cylindrique $\vec{r} = \frac{\vec{D} \cdot \vec{u}_{rs}}{2i\pi r_{s}\Delta z} \vec{u}_{rs}$ 6 qui peut s'écrire vs = grad [Phony + cte) v = grad ps avec ps = 2 hnrs + cte 0.2)b) Pour le puits il suffit de changer le signe $\vec{v}_{p} = -\frac{D}{2\pi r} \vec{v}_{p}$ $\vec{v}_{p} = -\frac{D}{2\pi r} \vec{v}_{p}$ $\frac{\lambda_{p}}{\rho} = \frac{\lambda_{s}^{2}}{\lambda_{s}^{2}} = \frac{$ d.l. ordre 1 :) rp = r (1+ d coo) done $\frac{\Lambda_s}{\Lambda_p} = \frac{1 - \frac{d}{\Lambda}\cos\theta}{1 + \frac{d}{\Lambda}\cos\theta} = \left(1 - \frac{d}{\Lambda}\cos\theta\right)\left(1 - \frac{d}{\Lambda}\cos\theta\right)$ $\frac{\Lambda_s}{\Lambda_p} = 1 - \frac{2d}{\Lambda}\cos\theta$ sat la rs = - 2d con d'ai p(n) = - Dd con 0 Enonce: H = 2Dd d'on \(\phi(n) = - \frac{H coo}{2 \text{Tr} n} \) v = grad φ = 2 + 1 2 + $\vec{v} = \frac{H}{2\pi n^2} \left[\cos\theta \vec{u}_n + \sin\theta \vec{u}_0 \right]$ 0.2)d) Cela ressemble av chang É créé par un doublet de charges - 9 + 9, à ceu près que a chang varierait en $\frac{1}{13}$ et non en $\frac{1}{12}$.

de fels as charges lineignement _ l + l
et alas l'analogie est convenable. 1)1) $\vec{v} = \vec{v}_T + \vec{v}_D + \vec{v}_D d'après l'énoncé$ On vient de trouver $\vec{r}_{3} = \frac{H}{2\pi i} \left[\cos \theta \vec{u} + \sin \theta \vec{u} \right]$ et $\vec{r}_{7} = \frac{\Gamma}{2\pi i} \vec{u} \quad (en \ 0.1)$ L'enance donne U= U= = u(cos O II, - sin O II) Ainsi = = (H cort + Ucort) = + (H sint - Usint + I) Si on veut house / = U(1- R) COO et $\left(\sigma = -U\left(1 + \frac{R^2}{R^2}\right) \sin \theta + \frac{V}{2\pi n}\right)$ il faut que -UR2 = H càd [H = - ZITUR2] 1)2) a) Fluide incompressible > flux de v constant dans un tube de L.C; alas la vitesse est plus grande là où tes lignes de caurant of so reservent. Ainsi V(y>R) > V(yC-R) 126) Pour entraîner plus vite les particules fluides pour y>R, il faut que le cylindre tourne dans le sens horaire Pour 0 = 1 5 = - U(1+ R) + 5 mais comme $\bar{u} = -\bar{u}$ ala donne $\bar{v} \in O$ pour que et air alle du gauche à droite brens de $\bar{u} + \bar{u} + \bar{u$ Par 0 = - II 5 = + U(1+B) + 2in et comme ü = + ü cela donne 5 > 0 pau que l'air alle bre dais le sens de is. = U(1+ k-) + [- le module de la vitessi est alors 5 = - 1 1 2 m Comme on sait que V > 5 il faut [(0) Pour n = R $\forall \theta$ on a $\sqrt{n} = U(1 - \frac{R^2}{R^2})\cos\theta = 0$ 124) Pau n=R et 0 = -30° au 0 = 150° on a v=0 aussi, can d'après le schema A et B sont des joints d'avrèt. Vo = - U(1+ 12) sin 0 + 1 = 0

sort [11] = - [= -4TRU sin (-30°) = 4TRUsin 30°

1.2 d) Fluide jarfait incompressible, écoul stationaire - Bernouilli le long d'une lique de courant, d'un point infini ai on a foret v en un foint du cylindre ai on a 100) et vo (car v=0 pour x= R) 1 PUL+ 10 = 1 Pul+ 1(0) d'où 1(0) = = = = [U2 - (-U(1+ R2) sin 0 + [211R)]+10 $1(0) = t_0 + \frac{\rho}{2} \left[U^2 - \left(\frac{\Gamma}{2\pi R} - 2U\sin\theta \right)^2 \right]$ 4.2 e) On remarque que $f(0) = f(\overline{n} - 0)$ Les forces pressantes présentent se donc une symétrie par raport à 0y. Ainsi F_x = 0 et = 0 can Fz janse jan 1.2. f) Fy = \int \frac{1}{10} Rd\theta h \times 2 sin\theta le facteur 2 provient de la symétrie / 0 y

0 = -\frac{17}{2}

Ainai, on integre seulement

entre -\frac{17}{2} et \frac{17}{2} Fy = 21. [co0] RR - PRR (-U Eno) + 1 (co0) + 20 (0) +250 (- sin20) = 40° 5 sin odo F = - PRh (2 TU - 40 x 0) $\cot \int_{\overline{A}}^{1} \sin^{3}\theta \, d\theta = \int_{\overline{A}}^{1} \sin \theta \, (\theta - \cos^{2}\theta) \, d\theta = \left[-\cos \theta + \frac{\cos^{3}\theta}{3} \right]_{\overline{A}}^{\frac{1}{2}} = 0$ [= 4TRUMIN OA Pau = -30° on a Fy = -Ph4TTRU sin OA Ainsi Fy>0 AN: F = 1,3 ×3 × 4TT×1×15 = 5573N

Q

4