	Sources	Approximations particularités	Equation de propagation	Relation de dispersion	$ec{E}$	\vec{B} obtenu par :
vide	rien	Propagation choisie selon x	$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \vec{0}$	$k = \frac{\omega}{c}$	$\vec{E}_0 e^{i(\omega t - kx)}$ Onde plane progressive dans le vide	$\vec{u}_x \wedge \frac{\vec{E}}{c}$
Métal de conduct ivité finie	$\vec{j} = \gamma \vec{E}$ Conductivi té réelle	$\varepsilon_0 \frac{\partial E}{\partial t} << j$ OK en-dessous de f optique Epaisseur de peau $\delta = \sqrt{\frac{2}{\mu_0 \gamma \omega}}$	$\Delta \vec{E} \approx \mu_0 \gamma \frac{\partial \vec{E}}{\partial t}$	$k \approx \sqrt{\omega \mu_0 \gamma} \frac{1 - i}{\sqrt{2}}$	$\vec{E}_0 e^{i(\omega t - \frac{x}{\delta})} e^{-x/\delta}$ Onde plane progressive très atténuée; rien après l'épaisseur de peau	$\frac{\vec{k} \wedge \vec{E}}{\omega}$ (k complexe)
Plasma sans collisio n	$\vec{j} = -ne\vec{v}$ ou $\vec{j} = \gamma \vec{E}$ Conductivi té imaginaire pure	Pas de force de frottement F _{magn} pour e relativiste	$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \frac{Ne^2}{m} \vec{E}$	$k = \frac{1}{c} \sqrt{\omega^2 - \omega_p^2}$ si $k = n \frac{\omega}{c}$ n réel	$\vec{E}_0 e^{i(\omega t - kx)}$ Onde plane progressive	$\frac{\vec{k} \wedge \vec{E}}{\omega}$ ou $\vec{u}_x \wedge \frac{\vec{E}}{c}$
				k imaginaire pur si n imaginaire pur	Pas de propagation pour f <fp ionosphère)<="" pour="" td=""><td></td></fp>	
Plasma avec collisio n	$\vec{j} = -ne\vec{v}$ ou $\vec{j} = \gamma \vec{E}$ Conductivi té complexe	Force de frottement $\vec{F} = -m\frac{\vec{v}}{\tau}$	$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{1}{m(1 + \frac{1}{i\omega\tau})} \vec{E}$		Propagation audessus de f $\tau > 1/\omega$ Atténuation sur $\delta = 1/\text{Im}(k)$ avec $\delta > 0$	$\frac{\vec{k} \wedge \vec{E}}{\omega}$ ou $\vec{u}_x \wedge \frac{\vec{E}}{c}$

Ce tableau n'est pas à apprendre par cœur ; il rassemble plusieurs cas de propagation et permet une comparaison rapide des différents résultats obtenus.

Ce qu'il faut par contre retenir :

Propagation si Réel(k) $\neq 0$

Atténuation si Im(k) \neq 0 (Im(k)<0 pour une onde écrite en $e^{i(\omega t - kx)}$)

Vitesse de phase : ${\bf v}_\phi$ = ω / Réel(k) On parle de milieu dispersif lorsque ${\bf v}_\phi$ dépend de ω . (exemple dans un plasma).

Vitesse de groupe : $v_g = d\omega / d Réel(k)$

La partie réelle de k ou de l'indice n est responsable de la propagation

La partie imaginaire de k ou de l'indice n est responsable de l'atténuation