I.C. — Prise en compte du relief

On suppose maintenant que la température à la surface plane z = 0 possède une dépendance spatiale en x que l'on modélise par la relation $T(x,z=0) = T_s + T_1 \cos\left(\frac{2\pi x}{\lambda}\right)$. Pour étudier l'effet du relief sur la température dans le tunnel de Fréjus on prendra $\lambda = 10,0$ km.

□ 15 — On suppose pour cette question qu'il n'y a pas de source d'énergie thermique dans la roche. Donner sans démonstration l'équation différentielle satisfaite par T(x,z) en régime stationnaire. En utilisant la méthode de séparation des variables, déterminer la solution T(x,z) qui respecte la condition aux limites T(x,z=0) et qui demeure finie lorsque $z \to +\infty$. Justifier la prise en compte des effets de la variation spatiale de la température.

 \Box 16 — Toujours pour une surface plane d'équation z = 0, en utilisant la linéarité de l'équation satisfaite par la température, déterminer T(x,z) en considérant les sources internes d'énergie thermique.

□ 17 — On considère ici que la topographie de la surface peut être représentée par l'équation $h(x) = h_0 \cos\left(\frac{2\pi x}{\lambda}\right)$. La température de la surface $T_s = T(x, z = h)$ sera prise égale à celle de l'air ambiant et sera modélisée par $T_s = \theta_0 + \beta z$. En effectuant un développement limité en z

à l'ordre 1, exprimer la température T(x,z=0) en fonction de h, T(x,z=h) et $\left(\frac{\partial T}{\partial z}\right)_{z=0}$.

Déterminer $\left(\frac{\partial T}{\partial z}\right)_{z=0}$ en fonction notamment du flux d'énergie thermique à la surface j_S . En déduire que que l'on peut écrire

$$T(x,z) = \theta_0 + c_1 z + c_2 \left(1 - e^{-z/H}\right) + c_3 h_0 \cos\left(\frac{2\pi x}{\lambda}\right) e^{-z/\delta}$$

où l'on précisera l'expression des constantes c_1, c_2, c_3 et δ en fonction des données du problème.

FIN DE LA PARTIE I

II. — Radioactivité α et effet tunnel

Le tunnel de Fréjus abrite le Laboratoire Souterrain de Modane (LSM), sous 1700 mètres de roche. Unité mixte du CNRS et du CEA, le LSM est en fonctionnement depuis 1982. Le LSM est un site scientifique exceptionnel protégé des rayons cosmiques, où ont lieu des recherches sur le neutrino, la matière noire ainsi que des mesures de faibles radioactivités et leurs applications aux études sur l'environnement et aux datations. Le LSM est entre autres spécialisé dans la spectrométrie γ . Le rayonnement γ , qui suit généralement une émission α ou β , est issu du noyau de l'atome et correspond à une désexcitation de ce dernier. En effet, après une désintégration α ou β , le nouveau noyau n'est pas toujours dans un état d'équilibre énergétique : il possède encore « un trop plein d'énergie », on dit qu'il est excité. Pour se débarrasser de cet excédent, il va émettre un ou plusieurs rayonnements γ d'énergie déterminée et caractéristique du noyau et donc de l'atome en présence. Nous allons dans cette partie nous intéresser plus particulièrement à la radioactivité α .

II.A. — Le quanton libre

□ 18 — Une particule quantique (quanton) est localisée sur un axe (O, \hat{u}_x) . L'état quantique de cette particule est caractérisé par une fonction d'onde : $\Psi(x,t)$. Rappeler le postulat de Born donnant la probabilité dP que la particule se trouve dans l'intervalle [x, x + dx] à l'instant t. En déduire la dimension de $\Psi(x,t)$.

] 19 — Interpréter la propriété $\int_{-\infty}^{+\infty} |\underline{\Psi}(x,t)|^2 dx = 1.$

Quelle est la signification physique de $\rho = |\Psi(x,t)|^2$? En associant la probabilité de présence à un « courant de probabilité » donner sans démonstration l'équation de conservation de la probabilité de présence. On fera apparaître un vecteur \vec{j} appelé vecteur densité de courant de probabilité. Une analyse non demandée montre que dans le cas mono-dimensionnel

$$\vec{j} = \frac{i\hbar}{2m} \left(\underline{\Psi} \frac{\partial \overline{\Psi}}{\partial x} - \overline{\Psi} \frac{\partial \Psi}{\partial x} \right) \widehat{u}_x \tag{1}$$

Lorsque la particule possède une énergie potentielle V(x), la fonction $\underline{\Psi}(x,t)$ est solution de l'équation de Schrödinger non relativiste

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t) = i\hbar\frac{\partial \Psi(x,t)}{\partial t}$$

avec $\hbar = \frac{h}{2\pi} = 1.05 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}.$

21 — Rappeler ce qu'on entend par particule non relativiste. On cherche des états d'énergie stationnaire \mathcal{E} de la forme $\underline{\Psi}(x,t) = \underline{\varphi}(x) \times \underline{f}(t)$. Déterminer l'équation de Schrödinger indépendante du temps vérifiée par $\underline{\varphi}(x)$ et la forme générale de $\underline{\Psi}(x,t)$ en fonction notamment de $\underline{\varphi}(x)$ et \mathcal{E} . Que peut-on dire de la probabilité de présence dP?

On définit une particule libre comme une particule de masse m, d'impulsion \vec{p} et d'énergie $\mathcal{E} = \frac{\vec{p}^2}{2m} > 0$ évoluant dans une région d'énergie potentielle V(x) nulle.

22 — Déterminer la solution générale de l'équation de Schrödinger indépendante du temps pour une particule libre. Montrer que sa fonction d'onde $\underline{\Psi}(x,t)$ est la somme de deux ondes planes se propageant en sens inverse.

3 23 — Définir le vecteur d'onde \vec{k} que l'on peut associer à cette particule. Déterminer la relation entre \vec{p} et \vec{k} . Comment s'appelle cette relation?

II.B. — Effet tunnel

Le quanton d'énergie \mathcal{E} arrive d'une région I définie par x < 0 et dans laquelle son énergie potentielle est V(x) = 0. Il est susceptible également de se trouver soit dans une région II telle que 0 < x < a où règne une énergie potentielle $V(x) = V_0$ ou bien dans une région III définie par x > a, dans laquelle V(x) =0. On supposera que $0 < \mathcal{E} < V_0$ et l'on cherche des états stationnaires d'énergie \mathcal{E} .

FIGURE 4 – Marche d'énergie potentielle

 $\hfill 24$ — Rappeler brièvement ce que serait le comportement de ce quanton s'il était régi par la mécanique classique.

26 — Déterminer la forme générale de la solution de l'équation de Schrödinger indépendante du temps dans la région III. On posera $q = \sqrt{\frac{2m(V_0 - \mathcal{E})}{\hbar^2}}$. Cette solution fait apparaître 2 constantes d'intégration que l'on ne cherchera pas à déterminer.

27 — Énoncer les propriétés générales de la fonction d'onde en x = 0 et x = a permettant d'écrire un système de 4 équations dont les 5 inconnues sont les constantes d'intégration des questions 25 et 26. On ne cherchera pas à résoudre ce système. Quelle dernière hypothèse permet de définir complètement la fonction d'onde en tout point x?

□ 28 — En utilisant l'équation (1) déterminer les courants de probabilité dans les régions I et III en fonction des constantes d'intégrations de la question 25. Comment peut-on interpréter ces deux courants ? En déduire les coefficients de réflexion R et de transmission T caractérisant cette barrière d'énergie potentielle en fonction de ces mêmes constantes.

Un calcul non demandé permet d'obtenir

$$T = \frac{1}{1 + \frac{V_0^2}{4\mathcal{E}(V_0 - \mathcal{E})} \mathrm{sh}^2(qa)}$$

□ 29 — On considère que le quanton est un électron de masse $m_e = 9,11 \times 10^{-31}$ kg et d'énergie $\mathcal{E} = 1,00 \text{ eV}$ évoluant dans le potentiel décrit sur la figure 4 avec $V_0 = 2,00 \text{ eV}$. Dresser un tableau des valeurs de qa et T pour a = 0,50 nm; 1,00 nm et 2,00 nm. Définir ce que l'on appelle une barrière d'énergie potentielle épaisse et montrer que dans ce cas $T \simeq T_0(\mathcal{E}, V_0) e^{-2qa}$ où l'on précisera l'expression de $T_0(\mathcal{E}, V_0)$. En étudiant les variations de $T_0(\mathcal{E}, V_0)$ pour $0 < \mathcal{E} < V_0$, déduire que pour une barrière épaisse, l'on peut écrire $\ln(T) \approx -2qa$.

II.C. — Radioactivité α

La radioactivité α est l'émission de noyaux d'hélium 4, appelés particules α , par des noyaux atomiques lourds (généralement tels que Z > 82), selon la réaction

$$^{A}_{Z}X \rightarrow^{4}_{2}He +^{A-4}_{Z-2}Y$$

dans laquelle A représente le nombre de nucléons (protons et neutrons) et Z le nombre de protons du noyau X. George Gamow fut le premier en 1928 à interpréter la radioactivité α grâce à l'effet tunnel. Il considéra que le noyau Xétait constitué au préalable de la particule α et du noyau Y. L'énergie potentielle V(x) d'interaction entre ces deux particules est une fonction de la distance x qui les sépare dont l'allure est représentée sur la figure 5.

FIGURE 5 – Allure de l'énergie de potentielle

- pour des grandes valeurs de x, cette énergie potentielle correspond à la répulsion électrostatique, et présente donc un profil coulombien de la forme $\frac{K}{4\pi\epsilon_0 x}$
- pour $x < x_0$, les interactions nucléaires attractives interviennent et l'énergie potentielle est un puits très profond.
- pour l'uranium 238 : Z = 92 et $x_0 = 3,50 \times 10^{-15}$ m. La mesure de l'énergie \mathcal{E} des particules α émises par ce noyau donne une valeur proche de 4,00 MeV.

□ 30 — Déterminer l'expression de la constante K en fonction de Z et de la charge élémentaire $e = 1,61 \times 10^{-19}$ C. En déduire la hauteur V_0 de la barrière d'énergie potentielle à franchir. Calculer la distance x_m à laquelle l'énergie potentielle coulombienne est égale à \mathcal{E} . Donner un ordre de grandeur de la largeur de la barrière d'énergie potentielle à franchir. Peut-on considérer que la barrière est épaisse? On donne la masse de la particule α , $m_{\alpha} = 6,64 \times 10^{-27}$ kg et on rappelle que $\frac{1}{4\pi\epsilon_0} = 8,98 \times 10^9$ SI.

Etant donné que la barrière d'énergie potentielle n'a pas la forme simple de celle étudiée dans la section II.B, on ne peut donc plus utiliser directement l'approximation de T obtenue à la question 29. Pour $x > x_0$, on peut cependant approcher la fonction V(x) par une succession de barrières rectangulaires de hauteur V(x) et de largeur dx(Voir figure 6) suffisamment épaisse pour pouvoir utiliser l'approximation.

FIGURE 6 – Approximation de la barrière.

31 — En généralisant le résultat obtenu pour T en fonction de T_0 , déterminer T(x + dx) en fonction de T(x), q et dx. En considérant, pour simplifier la suite du calcul, que $qdx \ll 1$, établir la relation

$$\ln(T) \approx -\frac{2}{\hbar} \int_{x_0}^{x_m} \sqrt{2m_\alpha \left(\frac{K}{4\pi\epsilon_0 x} - \mathcal{E}\right)} dx$$

 \Box 32 — On admettra que

$$\int_{x_0}^{x_m} \sqrt{\frac{x_m}{x} - 1} \, dx \approx x_m \left(\frac{\pi}{2} - 2\sqrt{\frac{x_0}{x_m}}\right) \qquad 16$$

En déduire la loi de Gamow-Condon-Gurney, valable pour $\frac{x_0}{x_m} \ll 1$: 8

$$\ln(T) = a - \frac{b}{\sqrt{\mathcal{E}}}$$

Dans laquelle on exprimera a et b en fonction des données du problème.

33 — En considérant que la particule fait des aller-retour dans une région d'extension $2x_0$ et que l'on peut obtenir un ordre de grandeur de la vitesse de la particule α en utilisant la relation $\mathcal{E} = \frac{1}{2}m_{\alpha}v^2$, estimer l'expression du temps moyen t_m $16 - \frac{\log_{10}(\tau_{1/2} [s])}{238 *}$ $12 - \frac{246 \circ}{232 *} \frac{234 *}{226} \frac{234 *}{226} \frac{234 *}{226} \frac{234 *}{2226} \frac{234 *}{2226} \frac{234 *}{2226} \frac{234 *}{2226} \frac{234 *}{2226} \frac{232 *}{226} \frac{232$

entre deux rebonds de la particule sur la barrière d'énergie potentielle. En déduire celles du nombre moyen de rebonds par seconde, de la probabilité dp d'émission α pendant dt et du temps de demi-vie $\tau_{1/2}$ de l'émetteur α . En admettant que t_m varie peu d'un émetteur α à un autre déterminer une relation entre $\ln(\tau_{1/2})$ et \mathcal{E} . Cette loi fut établie empiriquement par Geiger et Nuttal en 1911.

 \Box 34 — Comparer les résultats précédents à ceux que l'on peut déduire des mesures rassemblées sur la figure 7.

FIN DE LA PARTIE II

FIN DE L'ÉPREUVE